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ABSTRACT
We have modeled numerically the propagation of waves through magnetic structures in a stratiÐed

atmosphere. We Ðrst simulate the propagation of waves through a number of simple, exemplary Ðeld
geometries in order to obtain a better insight into the e†ect of di†ering Ðeld structures on the wave
speeds, amplitudes, polarizations, direction of propagation, etc., with a view to understanding the wide
variety of wavelike and oscillatory processes observed in the solar atmosphere. As a particular example,
we then apply the method to oscillations in the chromospheric network and internetwork. We Ðnd that
in regions where the Ðeld is signiÐcantly inclined to the vertical, refraction by the rapidly increasing
phase speed of the fast modes results in total internal reÑection of the waves at a surface whose altitude
is highly variable. We conjecture a relationship between this phenomenon and the observed spatio-
temporal intermittancy of the oscillations. By contrast, in regions where the Ðeld is close to vertical, the
waves continue to propagate upward, channeled along the Ðeld lines but otherwise largely una†ected by
the Ðeld.
Subject headings : MHD È Sun: chromosphere È Sun: magnetic Ðelds È Sun: oscillations

1. INTRODUCTION

The inÑuential papers of Biermann (1948), Schwarzschild
(1948), Thomas (1948), and Osterbrock (1961) focused the
attention of a generation of astrophysicists on the problem
of wave propagation in magnetized stellar atmospheres.
The initial Ñurry of activity attempted to determine the effi-
cacy of convection-generated waves in transporting and
depositing mechanical energy in the overlying chromo-
spheric and coronal plasmas.

The question remains unanswered despite continuing
e†orts over the last half a century. In large part, this can be
traced to the complicated mathematical description of the
underlying physical processes that bear on wave propaga-
tion in realistic magnetoatmospheres. The principal players
are magnetohydrodynamics (MHD), radiative transfer
(RT), and nonequilibrium thermodynamics (non-LTE), and
their activities are described by a coupled system of nonlin-
ear partial di†erential equations (PDEs) in seven indepen-
dent variables (three space and one time coordinate, plus
the three components of a photonÏs momentum). Analytic
solutions are out of the question. Direct numerical solutions
present a very difficult undertaking from both conceptual
and computational perspectives.

Observationally based e†orts to settle the ““ wave-
heating ÏÏ question have fared no better than their theoreti-
cal counterparts. The last two decades have witnessed many
Ðrst-time detections of waves and oscillations in a wide
variety of solar structures and atmospheric layers. Oscil-
latory motions are present in sunspots, prominences,
coronal and chromospheric loops, in the emission-line
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corona, in the network and internetwork photosphere, in
the deep solar interior, and in the distant solar wind. We
detect these Ñuctuations through their characteristic
imprints upon emergent Stokes proÐles, from the radio to
the extreme-ultraviolet wavelengths of the spectrum.
However, an accurate interpretation of these data in terms
of wave energy and momentum Ñux densities remains
subject to the grave uncertainties that invariably attend ill-
posed inverse problems.

SigniÐcant progress has recently been achieved in under-
standing wave propagation in nonmagnetic atmospheres.
At the heart of this success is a novel data-assimilation
strategy that combines numerical simulations with high-
precision spectroscopic observations having sufficient
spatial and temporal sampling cadences. Carlsson & Stein
(1997) have employed this strategy with remarkable success
in the study of the Ca II H and K grain phenomenon. Their
numerical code takes full account of RT and non-LTE
atomic level populations, while faithfully evolving the
hydrodynamics. The simulation was driven at the lower
atmospheric boundary with Doppler velocities observed in
the photospheric Fe I 396.68 line present in the broad wings
of the Ca II H resonance line (Lites, Rutten, & Kalkofen
1993). The resulting temporal behavior of the Ca II H2V,
which was also observed by Lites et al. (1993), was found to
be in remarkable agreement with that synthesized from the
driven simulation. This success allowed Carlsson & Stein
(1997) to develop a physically satisfying explanation of how
the radiation interacts with the hydrodynamics to produce
the observed bright-grain behavior in the core of the Ca II

H and K resonance lines.
The Carlsson and Stein study was made tractable by

assuming translational invariance in the two lateral spatial
coordinates and by ignoring magnetic e†ects. Their success,
while remarkable, was also in some sense limited to a spe-
ciÐc physical process where their approximations are justi-
Ðed a posteriori. With this paper, we report on a long-term
ongoing research initiative to extend the Carlsson and Stein
approach to include MHD e†ects and to permit nontrivial
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variations in the lateral spatial coordinates. By relaxing
these assumptions, we hope to extend the physical under-
standing developed for the Ca II H and K bright grain
phenomenon to other dynamic processes in the solar atmo-
sphere. An enhanced capability to treat a wide variety of
atmospheric dynamics brings us an important step closer to
answering the ““ wave-heating ÏÏ question posed at the start
of this discussion.

As a Ðrst step toward this goal, we report here on two-
dimensional simulations of waves in stratiÐed but non-
radiating magnetoatmospheres. To limit the nonessential
complications, the imposed magnetic Ðeld is potential (i.e.,
current-free), and the atmosphere is isothermal. We solve
the compressible MHD equations subject to a constant
gravitational acceleration but restrict the motions to be
isentropic. In subsequent e†orts we shall systematically
eliminate these limitations in keeping with our scientiÐc
objectives.

The work of Shibata (1983) is one of the few previous
solutions of a fully two-dimensional nonlinear magneto-
acoustic wave problem in a stratiÐed atmosphere. Starting
with an initially uniformly magnetized atmosphere, he
introduces a strong localized pressure pulse, which excites
fast and slow magnetoacoustic waves as well as vortical
motion at the site of the initial pressure pulse. More
recently, Cargill, Spicer, & Zalesak (1997) found numerical
solutions for wave propagation in geometries similar to
some of those discussed here. However, while their tech-
nique is certainly applicable to the problems discussed in
this paper, they chose instead to concentrate on the pre-
dominantly solutions obtained when the system isAlfve� nic
driven by motions in the invariant direction, whereas we are
here primarily concerned with the predominantly magneto-
acoustic solutions that are relevant when driving is in the
noninvariant directions.

The astrophysical focus of this paper is on how the mag-
netic Ðeld topology of the network/internetwork regions
a†ects the propagation of waves generated at the atmo-
spheric base. The drivers used here are not taken from
observations but are prescribed analytic functions of time.
Since the RT and non-LTE aspects of the simulation are
not in e†ect here, there is little utility in pursuing the full
data assimilation strategy. Rather, the emphasis of this
paper is to gain a basic familiarity with how the magnetic
e†ects come into play.

The methods used are described in ° 2, and this is fol-
lowed in ° 3 by a brief review of the relevant physics. In ° 4
we discuss results from exemplary models corresponding to
simpliÐed Ðeld geometries. As an application to a more
realistic Ðeld geometry, we discuss the case of internetwork
and network oscillations in °° 5 and 6. Our conclusions are
presented in ° 7.

2. NUMERICAL METHOD

We solve the equations of nonlinear, compressible MHD
in two dimensions using the (three-dimensional) numerical
code described in Dorch & Nordlund (1998), Mackay &
Galsgaard (2001), and in more detail by Nordlund & Gals-
gaard.6 In short, the code functions as follows : the variables
are represented on staggered meshes, such that the density o
and the internal energy e are volume-centered, the magnetic
Ðeld components B and the momentum densities ou are

6 See http ://www.astro.ku.dk/Dkg.

face-centered, while the electric Ðeld E and the current J are
edge-centered. A sixth-order accurate method involving the
three nearest neighbor points on each side is used for deter-
mining the partial spatial derivatives. In the cases where
variables are needed at positions other than their deÐned
positions, a Ðfth-order interpolation scheme is used. The
equations are stepped forward in time using the explicit
third-order predictor-corrector procedure by Hyman
(1979), modiÐed for variable time steps. In order to suppress
numerical noise, high-order artiÐcial di†usion is added in
both the form of a viscosity and the form of a magnetic
di†usivity.

The code has been tested on a wide range of standard test
problems such as the hydrodynamic Sod shock tube (Sod
1978), the Orszag-Tang vortex system (Orszag & Tang
1979), and the Dai-Woodward two-dimensional MHD
shock (Dai & Woodward 1998). In all cases the code per-
formed competitively against other MHD codes described
in the literature.

We have implemented boundary conditions that are
designed, so far as is practical, to allow waves to be injected
at the lower boundary of the computational domain and to
propagate out through the upper boundary. For the hydro-
dynamic variables (the vertical velocity, density, and
pressure) we implement characteristic boundary conditions
in the manner described by Korevaar (1989). For the hori-
zontal velocity and magnetic Ðeld we implement the same
method applied to characteristics corresponding to incom-
ing and outgoing shear modes traveling at the speed.Alfve� n
The vertical component of the Ðeld at the boundary is then
allowed to vary freely according to the induction equation.
Thus, we do not treat the case of fully coupled MHD waves
but instead assume that the waves crossing the boundary
can be separated into longitudinal waves traveling at the
sound speed and transverse waves traveling at the Alfve� n
speed. In the horizontal direction all variables are periodic.

The system is driven by forcing at the lower boundary. A
wide variety of di†erent driving mechanisms can be imple-
mented. For the exemplary models we describe in ° 4 we
consider both horizontal driving, in which the whole lower
boundary is shaken horizontally at a Ðxed frequency, and
vertical driving, in which the whole lower boundary is
shaken vertically at a Ðxed frequency. In the simulations of
waves in the internetwork and network (°° 5 and 6) the
oscillations are forced with vertically moving horizontally
localized pistons. This localized forcing provides a clearer
picture of the wave dynamics and may also be a better
model of the real solar forcing of such oscillations by col-
lapsing granules (Skartlien, Stein, & Nordlund 2000).

3. A PHYSICS PROLOGUE

3.1. Uniformly Magnetized Fluid
The interpretation and identiÐcation of propagating

waves in general magnetoatmospheres is best e†ected
through a working knowledge of MHD wave properties in
idealized equilibria possessing a high degree of symmetry.
In this section we shall brieÑy recount the essential results
of these pedagogical examples and also establish the ter-
minology that will be adapted to general magnetohydro-
static equilibria which lack symmetries.

The most basic example is that of wave motions in a
homogeneous, compressible, ideal Ñuid threaded by a
uniform magnetic Ðeld. Without loss of generality, we may
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assume a common factor exp [i(k Æ x [ ut)] for all Ñuctua-
tions. The symmetries permit one to align the magnetic Ðeld
with the z-axis, and to restrict the wavevector k to lie within
the x-z plane. Let r denote the angle between B and k. The
elimination of the pressure and magnetic Ðeld Ñuctuations
in favor of the (Lagrangean) displacement of a Ñuid element
m, and the replacement of derivatives by wavevector and
frequency multiplications, results in a set of three linear
homogeneous equations in the three (unknown) com-
ponents of the Ñuid displacement vector, m

x
, m

y
, m

z
.

Nontrivial solutions exist only for speciÐc choices of the
phase speed v\ u/k, which are equivalent to the eigen-
values of the associated 3 ] 3 matrix. The eigenvalues may
be ordered in decreasing magnitude as follows,

v2̀ \ 12 (a2] c2] Ja4] c4[ 2a2c2 cos 2r) , (1)

v02 \ a2cos2 r , (2)

v~2 \ 12 (a2] c2[ Ja4] c4[ 2a2c2 cos 2r) , (3)

where a 4 B/(4no)1@2 is the speed and c4 (cp/o)1@2 isAlfve� n
the (adiabatic) sound speed. To each of these three eigen-
values there corresponds a displacement eigenvector. These
eigenvectors are mutually orthogonal, and they satisfy

for r ½ (0, The orientation of oureü ~ Â eü 0\ eü
`

, 12n).
Cartesian coordinate system ensures that Thus,eü 0\ eü

y
. eü

B
,

like the wavevector and the background magnetic Ðeld,
both lie within the x-z plane. Let t denote the angle
between B and theneü

`
,

tan t\ c2 sin 2r
c2 cos 2r[ a2] Ja4] c4[ 2a2c2 cos 2r

.

(4)

It is conventional to call the ““ plus ÏÏ solution the fast-
mode wave, the ““ minus ÏÏ solution the slow-mode wave, and
the ““ 0 ÏÏ solution the intermediate-mode or the wave.Alfve� n
According to the above equation, for a º 2c, whilet[ n/2,
for cº 2a, For high magnetic Ðeld strengths, thetZ r.
fast-mode displacement is perpendicular to B irrespective of
the propagation direction. For weak magnetic Ðelds, the
fast-mode displacement is nearly aligned with the wavevec-
tor irrespective of the Ðeld direction.7 In this latter case, the
fast mode is longitudinally polarized, while the slow mode is
transversely polarized. Notice that in the strong Ðeld limit,
the fast mode exhibits transverse polarization for propaga-
tion along the background magnetic Ðeld, but it switches to
longitudinal polarization for propagation across the mag-
netic Ðeld. Should the sound speed and the speeds beAlfve� n
comparable, then one Ðnds that tB (n/4)] 12r.

Finally, we point out that the gas pressure and magnetic
pressure (B Æ B@/4n) Ñuctuations are in phase and add con-
structively for the fast mode. For the slow mode they are
out of phase and tend to cancel. For the intermediate mode
they both vanish identically.

3.2. Uniformly Magnetized Atmosphere
In the presence of gravitational and/or thermal stratiÐ-

cation, the situation described in the previous subsection

7 The slow-mode displacement is of course o†set by n/2.

must be modiÐed to account for the restoring force owing to
the buoyancy of a displaced parcel of Ñuid, and to
encompass the nontrivial variation of the atmosphere along
the stratiÐcation direction.

To be deÐnite, suppose that the gravitational acceleration
and the direction of stratiÐcation are both aligned with the
(negative) z-axis of a Cartesian coordinate system. The
uniform magnetic Ðeld is taken to lie in the x-z plane and to
make an angle h ½ [0,(n/2)] with respect to the unit vector

The arbitrary stratiÐcation in the z-direction restricts theeü
z
.

Fourier analysis to the x-y plane (note that, unlike the pre-
vious case, the Ðeld has a component in the x direction, so
the x and y directions are not equivalent). The (lateral)
wavevector must also lie in this plane, and we suppose it
makes an angle t ½ (0, n) with respect to the unit vector eü

x
.

The elementary Ñuctuations from which general wave
motions may be constructed by superposition all carry a
common factor exp [ik(x cos t] y sin t[ vt)]. The
dependence upon the z-coordinate must be determined
from the ensuing set of ordinary di†erential equations
(ODEs).8 These equations may be (and have been) written
down in numerous waysÈthe system is equivalent to a
single sixth-order ODE or a set of six coupled Ðrst-order
ODEs (Thomas 1982 ; Zhugzhda & Dzhalilov 1984a).

This fact indicates that the three distinct MHD wave
modes of the previous subsection, viz., the fast, interme-
diate, and slow modes, are no longer distinct. Instead, they
are coupled to one another and are subject to mixing and
conversion during the course of propagation. Following the
convention of Thomas (1983), we shall refer to the solutions
of this set of ODEs as magnetoatmospheric waves (MA
waves).

With the exception of Zhugzhda & Dzhalilov (1984a),
little attention has been given to studying the full sixth-
order system. Rather, certain simpliÐcations have been
noted, and these special cases have been the subject of
intense investigation. For example, the intermediate-MA
(or wave decouples from the remaining waves if (1)Alfve� nic)
t\ 0, n (i.e., no variations perpendicular to the magnetic
Ðeld and gravitational acceleration), (2) h \ 0 (i.e., the mag-
netic Ðeld is aligned with the gravitational acceleration),
or (3) h \ t\ n/2 (i.e., the magnetic Ðeld, lateral wavevec-
tor, and the gravitational acceleration are mutually
orthogonal). Provided the remaining fast and slowh D n/2,
MA waves remain coupled and yield a fourth-order system
of ODEs. The lower degree of this system of ODEs makes
the ensuing analysis more tractable and easier to interpret
(e.g., Ferraro & Plumpton 1958 ; Weymann & Howard
1958 ; Zhugzhda & Dzhalilov 1982 ; Zhugzhda & Dzhalilov
1984b ; Leroy & Schwartz 1982 ; Thomas & Scheuer 1982 ;
Schwartz & Bel 1984 ; Zhukov 1985 ; Kamp 1989 ; Campos
& Saldanha 1991 ; Hasan & Christensen-Dalsgaard 1992 ;
Banerjee, Hasan, & Christensen-Dalsgaard 1995 ; Bogdan
& Cally 1997 ; Cally 2001).

The oblique magnetic Ðelds have a crucial pro-(h D n/2)
perty that is not shared by their horizontal (see below)
counterparts : the ratio of the sound speed to the Alfve� n
speed varies along every magnetic line of force. In particu-

8 A wavevector along the z-direction may be uniquely deÐned through
the use of the Hilbert transform but will be found to be a complicated
function of z, and it need not be identical for all the Ñuctuations associated
with the wave. In the high-frequency, WKBJ limit where the deÐnitions
become uniform, this concept of course proves extremely fruitful.
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lar, it is possible for Ðeld lines to have opposite ends rooted
in high- and low plasma-b atmospheric layers. At these
extremes, where a ? c or c? a, the general system of ODEs
factors into three weakly coupled second-order ODEs,
which can once again be identiÐed with fast, intermediate,
and slow MA waves. The essential physical reason for this is
the large disparity between the e†ective wavelengths of the
fast [max (c, a)/u] and slow [min (c, a)/u] modes of propa-
gation. It is important to keep in mind that di†erent
decouplings pertain to the high- and low-b ends of each
Ðeld line. For example, the fast MA wave in the high-b
plasma is essentially a longitudinal acoustic wave, while the
slow MA wave becomes one of the two transverse Alfve� n
waves. In the low-b plasma, the slow MA wave is a longitu-
dinal acoustic wave that is guided along the magnetic lines
of force, while the fast MA wave becomes a predominantly
transverse oscillation in which magnetic tension is the prin-
cipal restoring force. Between these two extremes is a
mixing layer where a B c and mode-conversion, transmis-
sion, and reÑection occurs. Such b B 1 mixing layers also
play a fundamental role in the behavior of waves in general
magnetoatmospheres.

We conclude this subsection by pointing out that the
horizontal magnetic Ðeld limit h ] n/2, is singular. Putting
h \ n/2 in the governing ODEs reduces the order of the
system from 6 to 2. The second-order ODE possesses
movable singularities that are not present in the sixth-order
system. These are usually manifested as critical layers,
where energy Ñuxes are discontinuous and Ñuctuations are
nonanalytic in the t ] O steady-state limit. For tD 0,
there are generally two critical layers termed the andAlfve� n
cusp resonant layers. When the horizontal wavevector is
aligned with the magnetic Ðeld (t\ 0) only the cusp reso-
nance remains, as the waves are decoupled (Nye &Alfve� n
Thomas 1976 ; Adam 1989). It is worth noting that speciÐc
magnetoatmospheres need not possess any of these critical
layers (e.g., Yu 1965).

The spectacular behavior of the Ñuctuations in the vicin-
ity of the critical layer(s), coupled with the implications sug-
gested by the nonzero divergence of the wave energy Ñux,
have prompted intense interest and investigation of the
horizontal magnetic Ðeld limit (see Nye & Thomas 1976 ;
Adam 1981, 1986, 1989, 1990 ; and Cally 1984) for a com-
prehensive mathematical analysis and, e.g., (Zhukov 1990 ;
Rosenthal 1990 ; Zhukov 1997 ; & GoossensPinte� r, C‹ adez— ,
1998 ; Tirry et al. 1998 ; Vanlommel & Goossens 1999 ;

& Goossens 1999 for solar applications). A contra-Pinte� r
dictory point of view has been proposed by Schwartz & Bel
(1984), who argue that critical layers are likely to be a ““ red
herring ÏÏ from an astrophysical point of view.

4. EXEMPLARY MODEL CALCULATIONS

At the next level of complexity, we may retain the hydro-
static stratiÐcation along the z-direction but extend our
attention to force-free and potential magnetic Ðelds that
are not unidirectional. This brings us to the class of MA-
wave propagation problems that are the concern of this
investigation.

As Wright & Evans (1991) point out, the Ñuctuating
Lorentz force is generally best described in an orthogonal
coordinate system Ðtted to the equilibrium magnetic Ðeld
(see Dungey 1969 ; Murata 1986 ; Cross 1988a, 1988b ;
Wright 1990, 1991, 1992 and references therein). In certain

instances, for example, a dipole magnetic Ðeld, this coordi-
nate system is readily determined. Realistic complex Ðeld
topologies may only permit a local Ðtting, as the Euler
potentials are multivalued. The governing equations are a
set of coupled PDEs, but as the above-cited references
describe, in very fortuitous circumstances, these PDEs may
decouple. The basic requirements for this simpliÐcation are
the neglect of the Ñuid compressibility (i.e., c/a ] 0) and
buoyancy e†ects (ug/c] 0). Even under these most favor-
able of circumstances, the resultant PDEs are generally not
solvable in terms of ODEs through the method of separa-
tion of variables. The critical layer phenomenon may also
persist in these more general circumstances, but it generally
requires line-tying of the magnetic Ðeld at a rigid boundary
(e.g., Goossens, Poedts, & Hermans 1985 ; Poedts, Hermans,
& Goossens 1985 ; Poedts & Goossens 1987, 1988 ; Tirry &
Goossens 1995).

The neglect of buoyancy and compressibility restoring
forces is not justiÐed for wave propagation in the solar
atmosphere. Neither is reliance on eikonal methods a viable
alternative (e.g., Weinberg 1962 ; Bazer & Hurley 1963 ;
McKenzie 1973 ; Yeh 1974 ; Hollweg & Lilliequist 1978 ;
Barnes 1992) for the relevant oscillation periods (10È1000 s).
Accordingly, we have adopted a numerical scheme (see ° 2)
for solving the primitive conservation equations of mass,
momentum, and energy, coupled with the magnetic induc-
tion equation.

4.1. Basic Magnetoatmospheric State
Throughout this paper, the plane-parallel hydrostatic at-

mosphere is isothermal with a scale-height, H, of 158 km
and an adiabatic sound speed of 8.49 km s~1. At the atmo-
spheric base, the density and pressure are 2.60 ] 10~7
gm cm~3 and 1.13 ] 105 gm cm~1 s~2, respectively. A con-
stant gravitational acceleration of 2.74] 104 cm s~2 is
adopted, and the ratio of speciÐc heats is set at 5/3.

With no magnetic Ðeld, the linear oscillations of this at-
mosphere are the familiar acoustic-gravity waves. They pro-
pagate vertically when

k
A
2 4

u2[ )2
c2 ] k2

AN2
u2 [ 1

B
(5)

is positive (with the notation of ° 3 remaining in force). For
Ðxed horizontal wavenumber, k, propagation is always pos-
sible at sufficiently great u? ) (acoustic waves) and suffi-
ciently small u> N (internal gravity waves) frequencies.
The quantities N and ) are the (also knownBrunt-Va� isa� la�
as buoyancy) and acoustic cut-o† frequencies, respectively
(dimensions : rad s~1). For our adopted isothermal atmo-
sphere parameters, these characteristic frequencies (divided
by 2n) are 4.19 and 4.28 mHz, respectively.

The initial background magnetic Ðeld is free of electric
currents and will be translationally invariant along the
y-axis in this paper. (In fact, we also set It canB

y
\ 0.)

therefore be generated either from a potential ' or from a
stream-function ( according to BothB \ $'\ $ Â (eü

y
.

'(x, z) and ((x, z) are solutions of LaplaceÏs equation ; thus,
a Fourier component of the potential (and stream-function)
that varies as sin 2nnx/L decays with height as exp[2nnz/
L . Unlike the adiabatic sound speed, c, which is strictly
constant, the speed a(x, z) \ p$'p/[4no(z)]1@2\Alfve� n
p$(p/[4no(z)]1@2 is generally a function of both x and z
coordinates. Consequently, the aforementioned wave-
mixing layer(s), where c\ a(x, z) or equivalently b(x, z)
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\ 2/c\ 1.2, can exhibit complex topological structure.
One special case deserves mention. If the potential magnetic
Ðeld consists of a single (n \ 1) Fourier component with
L \ 4nH, where H is the scale height of the isothermal
atmosphere, then the speed is also strictly constantAlfve� n
throughout the entire atmosphere. It is then possible to
assume a common factor exp ik(y sin s ] z cos s [ vt) for
the Ñuctuations and reduce the wave propagation problem
to a sixth-order ODE in the x-coordinate (Oliver et al.
1993 ; Oliver, & Ballester 1996).C‹ adez— ,

All our calculations are two-dimensional in the following
sense. In the initial state, there is no component of B or u in
the y-direction. Also the initial state is invariant in the y-
direction. Driving is by specifying the displacement of the
lower boundary in either the x or z direction, and the speci-
Ðed displacement is also invariant in the y direction. Thus,
the system will be invariant in the y-direction for all times,
and and are zero for all times.B

y
u
y

4.2. Open vs. Closed Field Structures
To gain a rudimentary knowledge of MA-wave propaga-

tion in two-dimensional magnetoatmospheres, we consider
a matrix of four simulations displayed in Figures 1È6 and
described in Table 1. There are two equilibrium magnetic
Ðeld conÐgurations. One consists of a unipolar magnetic
Ðeld that is concentrated into two intense Ñux slabs (Figs.
1È3), while the other has an additional weaker concentra-
tion of opposite polarity (Figs. 4È6). At the upper boundary
of both equilibria, the Ðeld is essentially uniform and of the

TABLE 1

DESCRIPTION OF FIGURES 1È6

Figure Field ConÐguration Piston Type Variables Shown

1 . . . . . . Open Horizontal u
A

, u
M

2 . . . . . . Open Vertical u
A

, u
M

3 . . . . . . Open Vertical o1@2u
x
, o1@2u

z
4 . . . . . . Mixed Horizontal u

A
, u

M
5 . . . . . . Mixed Vertical u

A
, u

M
6 . . . . . . Mixed Vertical o1@2u

x
, o1@2u

z

dominant polarity, consistent with the exponential decay of
the Fourier components of B. In the unipolar case,n D 0
the uniform Ðeld is 750 G as compared with 600 G in the
bipolar equilibrium. At the atmospheric base the peak Ðeld
strengths are on the order of 5000 G for the unipolar
example and 7000 and 1500 G, respectively, for the domi-
nant and opposite polarity regions in the mixed polarity
case.

To complement the two equilibrium Ðeld conÐgurations,
we adopt two simple forcings at the lower boundary to
generate the waves. The entire lower boundary is moved
sinusoidally as a whole in either the vertical (radial driving :
Figs. 2, 3, 5, and 6), or horizontal (transverse driving : Figs. 1
and 4) directions. That is to say in the former case we specify

and set and in the latter case we specify and setu
z

u
x
\ 0, u

xIn either case, the oscillation frequency is 42 mHzu
z
\ 0.

(period\ 23.8 s). For radial driving we adopt a peak veloc-

FIG. 1.ÈSnapshot showing velocity parallel (top panel) and transverse (lower panel) to the magnetic Ðeld in a simulation of waves in an open magnetic Ðeld
conÐguration driven by shaking the lower boundary horizontally at 42 mHz. The velocity is shown as a fraction of the local sound speed. The snapshot is
taken at 40 s of simulated time. Two horizontal periods of the computational domain are shown.
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FIG. 2.ÈSame as Fig. 1, but for a case where the lower boundary oscillates in a vertical direction (simulated time 80 s)

ity for the boundary motion of 0.2 km s~1, corresponding
to a sonic Mach number of 0.024. For the transverse-
driving case the amplitude of the motion is 0.1 km s~1 for
the unipolar model and 0.35 km s~1 for the mixed-polarity
model. (As we discuss below, in the transverse-driving cases
the sonic Mach number remains much less than unity
throughout the computational domain, so the amplitude of
the driving a†ects the result only through a linear scaling.)

Each of Figures 1, 2, 4, and 5 comprises two panels : the
upper panel gives a gray-scale rendering of the component
of the instantaneous Ñuid velocity that is aligned with the
instantaneous magnetic Ðeld, the lower gives the remaining
component. The computational domain is reproduced twice
in each panel to allow one to visualize the wave motions
from network or internetwork perspectives. The white lines
overplotted on the left half of the Ðgures show the instanta-
neous locations of selected magnetic Ðeld lines as unbroken
curves, and surfaces of constant values of the plasma b as
labeled broken lines. The same curves apply to the right half
of each Ðgure but are omitted for clarity. Finally, we
mention that the spatial coordinate is measured in mega-
meters, and the gray scale is the instantaneous Mach
number. As a complement to these snapshots, Figures 3 and
6 show the temporal development of the solutions corre-
sponding to Figures 2 and 5, respectively. For these two
Ðgures, the gray scale shows the horizontal (left panels) and
vertical (right panels) components of velocity multiplied by
the square root of the local instantaneous density, to
provide a quantity that is dimensionally the square root of
an energy density.

The lower panels of Figures 1 and 4 show very clearly the
propagation of the transverse (to B) oscillations up and
outward along the Ñaring magnetic Ðeld of the dominant
polarity network Ñux concentrations. Notice the rapid
increase of the wavelength with height, which is a conse-
quence of the (nearly) exponential increase of the Alfve� n
speed with altitude. This is brought about by the exponen-
tial decrease of the density, with the expansion of the mag-
netic Ðeld playing only a minor mitigating role. A careful
comparison of Figure 1 with Figure 4 shows that the trans-
verse waves in the mixed polarity equilibrium are about 75
km ahead of their counterparts in the unipolar equilibrium.
This is explained by the greater magnetic Ðeld strengths
present in the mixed polarity equilibrium network. For later
comparison, we note that the constant-b surfaces are nearly
indistinguishable from their initial locations.

As the core of the network magnetic Ðeld resides entirely
in a low-b plasma, these crescent-shaped waves are fast MA
waves, as evidenced by the fact that the motions are gener-
ally transverse to the magnetic Ðeld, with little com-
pressional density Ñuctuation. The propagation speed and
the spatial wavelengths are tied to the fast speed :
(a2] c2)1@2 B a.

Another piece of support for this identiÐcation comes
from the striking di†erence between the lateral spatial
variation of the waves at the top and the bottom of the
atmosphere. Near the top of the atmosphere, the crescents
from the distinct Ñux concentrations merge in such a
manner that the entire uniformly magnetized atmosphere
moves left and right en masse. This mimics the forcing at the
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FIG. 3.ÈTime sequence of the development of the simulation shown in the previous Ðgure, showing the horizontal (left panels) and vertical (right panels)
velocities multiplied, in each case, by the square root of the density. The snapshots correspond to simulated times of 20, 40, 60, and 80 s.

atmospheric base and has essentially zero horizontal wave-
number. The concentration of the magnetic Ðeld at the at-
mospheric base creates motions with higher order
horizontal wavenumbers, despite the forcing at wavenum-
ber zero. It is well known from the analysis of waves in
uniformly magnetized isothermal atmospheres that the ver-
tically propagating fast MA wave is completely reÑected
from a layer where its lateral phase velocity u/k matches the
local fast speed. Clearly, the horizontal phase speed of the
wavenumber zero component is inÐnite, and so this com-

ponent cannot be reÑected. The wavenumber one com-
ponent, based on the 1 Mm lateral extent of our
computational domain and the 42 mHz driving frequency,
has a horizontal phase speed of 42 km s~1. Higher wave-
number components obviously have proportionately
smaller horizontal phase speeds. The speed at theAlfve� n
top of the atmosphere is comfortably in excess of this value
for both equilibria, in agreement with the observation that
only the zero wavenumber component is making it to the
top of the simulation.



FIG. 4.ÈSame as Fig. 1, but for a mixed-polarity (X-point) geometry (simulated time 40 s)

FIG. 5.ÈSame as Fig. 2, but for a mixed-polarity (X-point) geometry (simulated time 80 s)
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FIG. 6.ÈSame as Fig. 3, but for a mixed polarity (X-point) geometry

If we continue to focus on Figures 1 and 4 but turn our
attention to the upper panels, we see a clear signature of the
presence of the slow MA wave. The region between x \ 0.7
and x \ 1.2 Mm in the upper panel of Figure 4 provides the
best evidence. One observes a herringbone pattern of verti-
cally stacked chevrons. Note in particular the antisymmetry
about the vertical magnetic Ðeld line that marks the center
of the network Ñux concentration. The chevrons have a
constant vertical extent that is smaller than that exhibited
by the crescents present in the lower panel. The motions
associated with these waves are Ðeld-aligned (they are

absent in the lower panel), and they propagate at the sound
speed. Hence, they are readily identiÐed as slow MA waves
in the low-b plasma of the network interior.

One may well ask why the slow MA herringbone pattern
is more obvious in Figure 4 than in Figure 1 and, in particu-
lar, why it is broader in horizontal extent. We noted above
that the slow MA wave is a direct by-product of the trans-
verse forcing. Near the core of the network, the slow MA
wave is generated in a low-b plasma and is guided along the
magnetic Ðeld lines through low-b plasma. Hence, it has no
opportunity to change its character or interact with the fast
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MA waves present in the lower panel(s). As we move
outward from core of the network the magnetic lines of
force become more inclined, but of greater importance is
that they eventually pass through atmospheric layers where
the plasma b is of order unity or greater. Recall from ° 3.2
that mode mixing between fast and slow MA waves occur in
these layers, so the slow MA waves generated at the low-b
base of the edges of the network su†er reÑection and con-
versions that their network core counterparts do not. The
reason for the di†erent lateral extents of the slow MA her-
ringbone patterns between 1 and 4 is now clear if we esti-
mate the outermost network magnetic line of force that
manages to avoid passing through a b B 1 mixing zone !

Slow MA waves of the high plasma-b variety are also
present but only in the mixed polarity case (Fig. 4). The
transverse motion of the entire lower boundary also gener-
ates transverse (to B) waves that propagate up the reverse-
polarity Ñux concentration. Here the base value of the
plasma b is greater than 1, and moreover, it is an increasing
function of altitude immediately above the minority Ñux
slab.9 As the lower panel of Figure 4 conÐrms, high-b slow
MA waves have displacements transverse to the prevailing
magnetic Ðeld. They are also guided along the magnetic
Ðeld. Thus, as they propagate upward from the weak-Ðeld
Ñux concentration, their propagation speed decreases, as
does their wavelength, and they are diverted sideways and
then downward. In so doing, they run head-on into di†erent
waves that were generated on the extreme closed-Ðeld
Ñanks of the dominant polarity Ñux concentrations and
have su†ered complicated modiÐcations in making their
passage through the b B 1 circle.10

The closed-Ðeld region of Figure 4 (and Fig. 5) is compli-
cated both because of the X-point present in the equilibrium
magnetic Ðeld but also because there is no clear domination
of plasma or magnetic pressure throughout this zone. The
fast and slow MA waves are not readily disentangled, even
at such a high frequency as 42 mHz. The upper panel of
Figure 4 demonstrates that there are Ðeld-aligned motions
that are comparable in magnitude to the transverse motions
we associated with the slow MA wave. Examination of time
series provide a general impression that the semicircular
separatrix that connects the dominant polarity network
with the magnetic X-point e†ectively circumscribes, or
perhaps contains, the complicated mixed-mode region, and
that little coherent signal manages to cross the separatrix
and enter the overlying open-Ðeld regions. Some informa-
tion may manage to escape in this fashion, but it is visually,
and presumably energetically, overwhelmed by the waves
propagating upward along the open Ðeld network.

To complete our basic assessment of this quartet of ele-
mentary examples, we take up the radial driving cases of
Figures 2 and 5. The upper panels of these Ðgures show the
slow MA wave propagating upward along the magnetic
lines of force. The fronts are not parallel to the lower
boundary, but their lateral variations reÑect the fact that
they have passed through regions where the magnetic Ðeld
has sensible horizontal components and where the Alfve� n

9 This should be contrasted with the situation in the dominant polarity
surrounding network!

10 The absence of this behavior in Fig. 1 stems from the lack of appre-
ciable vertical magnetic Ðeld threading the boundary between the unipolar
Ñux concentrations. Only a viscous boundary layer can mediate the coup-
ling to the overlying magnetic Ðeld. Clearly this is not particular efficient in
the present circumstances.

and sound speeds have been comparable. It is interesting to
note how the instantaneous contours of the plasma b
respond to the passage of the wave fronts ! This occurs
because of the large density and pressure Ñuctuations that
accompany the wave steepening.

That the wave fronts are steepening with increasing alti-
tude can be veriÐed in three distinct ways. First, the color
bars indicate that the Mach numbers are signiÐcant.
Second, the waves themselves are signiÐcantly distorted
from a pure sinusoid (compare this with the upper panels of
Figs. 1 and 4). Third, the uppermost of the three wavefronts
has a larger vertical extent than those which follow it.
Examination of the Ðeld lines in the vicinity of the shocks in
Figure 2 does not show any obvious change in the Ðeld
direction across the shock front. However, enlarged plots of
the magnitude of the Ðeld components across the fronts do
show small jumps in the Ðeld, and the sign of these jumps is
such as to move the Ðeld direction closer to the normal to
the shock frontÈexactly as would be expected for a slow
MHD shock, formed from the steepening of an MHD slow
mode. However, the jumps in the magnetic Ðeld are small
(typically much less than 1% in these calculations). Note
that this steepening behavior occurs only for the slow
modes. The fast-mode propagation speed increases very
rapidly with height so the fast modes never have a chance to
become nonlinear.

The slight retardation of the wave front over the
internetwork reÑects the presence of signiÐcant transverse
magnetic Ðelds that are present at the atmospheric base on
the Ñanks of the dominant polarity network. The vertical
compression of these horizontal magnetic Ðelds acts to
speed up the wave front as they move through this region.
Thus, they gain slightly on the front that is moving up
through the internetwork. The di†erential gain is more pro-
nounced in the mixed-polarity case because the transverse
Ðelds are stronger than in the unipolar case. A comparison
of Figures 2 and 5 show that the wave front in the mixed-
polarity case is everywhere ahead of that in the unipolar
case. In the Ñanks of the network, the stronger transverse
Ðeld is the cause. Down the center of the internetwork, the
greater degree of steepening (Mach number of 0.226 vs.
0.166) is the culprit.

In both Figures 2 and 5 the variation in the amount of
steepening as one moves along the wavefront is signiÐcant.
In each case, the wave steepens most in the internetwork
region near the center of the computational domain where
it propagates at all heights as an acoustic disturbance. In
the neighboring regions, where the magnetic Ðeld is inclined
to the vertical, the enhanced wave propagation velocity
reduces the e†ective magnetoacoustic Mach number and
hence suppresses the steepening of the wavefronts with
height. We can anticipate that in solar applications this
e†ect could cause signiÐcant variations in the visibility of
chromospheric intensity oscillations above regions of
inclined magnetic Ðeld.

At the center of the open Ðeld component there is no
velocity enhancement from the inclined Ðelds. In this region
(between x \ 0.8 and 1.1 Mm on the upper panel of Fig. 2)
we see purely acoustic (slow mode) wave fronts that travel
upward at the sound speed and are therefore nearly in
phase with the waves in the center of the internetwork
where the Ðeld is also vertical (the wave over the
internetwork leads slightly because of its nonlinearity).
These slow waves are more clearly visible in Figure 3, on the
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right-hand side panels for x [ 0.8 Mm. In the correspond-
ing regions in Figures 5 and 6 the slow wave fronts are not
clearly visible. In this case, the accumulated phase di†erence
between the waves over the neutral point and the acceler-
ated waves that propagate through the closed-Ðeld com-
ponent is very close to a whole wave period so that the
slow-mode component rises apparently in phase with the
fast component, giving rise to the illusion of wave fronts
that are continuous across the network component. In fact,
the slow component is almost exactly one period behind the
fast component, which is why the Ðrst wave front in the
upper panel of Figure 5 vanishes there but the following
wave fronts all appear continuous. A comparison of the
waves at the far right-hand side edges of Figures 3 and 6
shows that they are, indeed, traveling at the same phase
speed.

The lower panels of Figures 2 and 5 show the signature of
the associated fast MA wave. The analysis proceeds essen-
tially along the lines stated above when we tackled the slow
MA wave in the transverse driving examples of Figures 1
and 4 but is subject to the appropriate reverse substitutions.
The obliquity of the magnetic Ðeld causes a slight amount of
fast MA wave to be generated in the Ñux concentrations
with radial driving. The sense is again antisymmetric across
the central vertical Ðeld line. A herringbone chevron pattern
is once more anticipated and is indeed evident in the lower
panels of Figures 2 and 5.

However, owing to the nontrivial variation of the Alfve� n
speed across the expanding network Ñux, the chevrons
develop curvature and the vertical extent of the chevrons
increases rapidly with altitude. Their merger near the top of
the atmosphere is accomplished in the sense that only the
wavenumber zero component is allowed to pass through
this boundary, consistent with the magnetic Lamb criterion.
The same arguments advanced before regarding the lateral
extent of the network magnetic Ðeld lines that do not
encounter b B 1 conversion zones, and the pattern visibil-
ity, basically remains in force.

5. INTERNETWORK OSCILLATIONS

As an example of the application of these ideas to a real
solar problem we now consider the e†ect of relatively weak
Ðelds on oscillations in the internetwork. Figure 7 shows a
model conÐguration for the Ðeld of a piece of magnetic
network. It is a simple monopolar Ñux sheet, but in contrast
to Figure 1 the Ñux tube is now surrounded at the photo-
spheric level by a much larger Ðeld-free region. We have
also extended the computational domain upward to 16
scale heights. Note that although the Ðeld lines spread out
rather slowly with height, the contours of plasma b spread
quite rapidly so that the b \ 1 contour forms a continuous
surface varying in height between 0.8 and 1.6 Mm above the
photosphere. The computational domain consists of 200
points in the horizontal and 92 in the vertical. The velocity
amplitude of the piston is 3.7% of the sound speed.

We consider Ðrst the e†ect of the Ðeld on internetwork
oscillations by driving the system with a piston conÐned to
the region outside the network element. Figure 8 shows the
velocities transverse and parallel to the magnetic Ðeld, while
Figure 9 shows the horizontal and vertical velocities scaled
with the square root of the density. (The domain of the
numerical calculations corresponds to the whole structure
shown in Figure 7, while Figures 8 and 9 show only expand-
ed views of the region where the velocity departs signiÐ-

FIG. 7.ÈField conÐguration corresponding to a network element and
the surrounding internetwork. Note that the upper panel is plotted with an
expanded vertical scale, and therefore the apparent slopes of the Ðeld lines
and b contours may be misleading.

cantly from zero. They have been plotted with an aspect
ratio very close to unity so that the slopes of the magnetic
Ðeld lines and b-contours are not misleading.)

As the wave travels upward from the source its velocity is
initially close to radial. However, as it approaches the b \ 1
layer, the wave front tilts and the velocity acquires a signiÐ-
cant horizontal component. The tilt of the wave front is
much as one would expect from a simple physical-optics
picture. The parts of the wave front closer to the Ñux tube
experience an extra restoring force owing to the Lorentz
forces, thus accelerating that part of the front ahead of the
part farther from the Ñux concentration. The tilting of the
wave front then causes the direction of the propagation to
tilt, as the propagation direction is locally along the normal
to the wave fronts. Because of the unlimited increase of the

speed with height, the wave front is eventuallyAlfve� n
turned around until it is propagating back downward
again, in a manner analogous to the phenomenon of total
internal reÑection in optics (or the reÑection of nonradial
p-modes by the increasing sound speed in the solar interior).
In the region above the reÑecting surface the wave is still
present as a pattern of long evanescent tails showing hori-
zontal propagation in the direction away from the Ñux
element.

Examination of Figure 8 shows that as the wave travels
into the low-b region, the velocity vector becomes oriented
so that it is predominantly in a direction transverse to the
magnetic Ðeld. Thus, the wave, which starts out as a fast
(acoustic) mode in the high-b region near the piston remains
a fast wave as it propagates into the low-b region, and the
total reÑection discussed in the previous paragraph can
therefore be viewed as a consequence of the rapid increase
of the fast magnetosonic speed with height, coupled with the
signiÐcantly nonzero propagation angle between the initial
wavevector and the gradient of that wave speed.

These simulations show a number of features that may be
relevant to observations of internetwork waves. Carlsson &
Stein (1997) showed that the K grain phenomenon could be
accurately modeled in terms of upwardly propagating
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FIG. 8.ÈResults of a simulation of an oscillation driven through the geometry of Fig. 7 by a vertically moving piston located in the internetwork region.
The left panels show the velocity component transverse to the Ðeld, and the right panels are the component parallel to the Ðeld, normalized to the sound
speed in each case. The four snapshots correspond to times 55, 110, 155, and 220 s after the piston is switched on. The frequency is 42 mHz. For reference,
contours of plasma b and magnetic Ðeld lines are shown in the lower panels, and the b \ 1 contour is shown in all panels.

acoustic shocks in an unmagnetized medium. Here we Ðnd
that the introduction of an inhomogeneous magnetic Ðeld
leads to reÑection, interference between upwardly and
downwardly propagating waves, and hence to rapid
(supersonic) horizontal phase propagation, as seen in obser-
vations of internetwork oscillations.

The reÑecting layer in this calculation is a corrugated
surface and in the real solar atmosphere the contours of

constant b will be even more irregular. If we assume that the
height of formation of the spectral diagnostic in which the
waves are measured varies much less than the height of the
b contours, then we can expect that a diagnostic that is
formed below the reÑecting layer in some regions of the Sun
will be formed above it in others and that in those regions
the measured amplitude will be very small. This seems a
promising explanation for the observed intermittancy of
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FIG. 9.ÈResults for the same calculation as Fig. 8, but showing the horizontal (left panels) and vertical (right panels) velocities multiplied, in each case, by
the square root of the density.

internetwork waves (e.g., Carlsson 1999 ; Judge, Tarbell, &
Wilhelm 2001), particularly in view of the correlation
between the intermittancy and the magnetic Ðeld shown by
McIntosh et al. (2001) and Mcintosh & Judge (2001).

6. NETWORK OSCILLATIONS

Figures 10 and 11 show comparable results for the case
where the piston is conÐned to the interior of the network
element. The contrast with the previous case is striking. As
the wave enters the low-b region, the Ðeld-aligned com-

ponent of velocity remains dominant, characteristic of an
MHD slow mode. In this case, where the direction of the
wavevector is also close to that of the magnetic Ðeld, the
slow mode is essentially a pure acoustic oscillation, guided
by the magnetic Ðeld and traveling at the sound speed. As it
propagates upward it will therefore steepen like an ordinary
nonlinear sound wave but will not, in an isothermal model
such as this, be reÑected. The amplitude of this compressive
component is somewhat smaller in this calculation than in
the previous, internetwork case. At a height of 1 Mm, the
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FIG. 10.ÈSame as Fig. 8, but now with the piston located wholly inside the network element

wave amplitude in this case has grown by a factor of D8
relative to the amplitude of the piston, while in the previous
calculation the growth factor at the same height is D9.5.
The smearing of the wave front by the spreading magnetic
Ðeld seems to be responsible for the di†erence.

The physical picture of the waves in Figures 10 and 11 is
therefore that they are predominantly acoustic oscillations
everywhere, and that as they move into the strong-Ðeld
low-b region they become guided along the Ðeld lines.
Mathematically, however, this means that waves that start

out as fast modes have now become slow modes, even
though there has been no change in the restoring force
determining their physical character. This is in contrast to
the case discussed in ° 4 above, where the waves remained
““ fast ÏÏ everywhere but the principal restoring force switched
from gas pressure to Lorentz forces as the wave traveled
from the high-b to low-b region. This raises two questions :
(1) which, if either, of these two calculations involves some-
thing which can be described as ““ mode conversion ÏÏ ? and
(2) why are the two calculations so di†erent?
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FIG. 11.ÈSame as Fig. 9, but with the piston located wholly inside the network element

We believe that the Ðrst of these questions involves prin-
cipally issues of semantics, and we therefore prefer to
eschew the terminology of ““ mode conversion ÏÏ entirely. The
second, however, is a real physical and mathematical ques-
tion and cannot be brushed aside. The answer seems to lie
in the degeneracy that occurs (in the case of a uniform Ðeld
in a homogeneous atmosphere) when the wavevector lies
parallel to the Ðeld and the sound speed and speedAlfve� n
are equal. In this case the slow and fast modes are perfectly
degenerate. Thus, the ““ fast ÏÏ acoustic wave propagating up

the Ñux concentration through b \ 1 is able to couple per-
fectly to the ““ slow ÏÏ acoustic wave that propagates up into
the low-b region. In the internetwork case of ° 5, by con-
trast, the angle between the wavevector and the magnetic
Ðeld is close to 45¡, and no such coupling is possible.
The wave therefore remains ““ fast ÏÏ everywhere and so is
reÑected.

From the solar point of view, the principle problem of
interpretation of Figures 10 and 11 is that such waves are
not observed in magnetic network elements in the Sun.
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Among the possible explanations for this observation are
the following :

1. The waves are present, but the attenuation of the wave
amplitude in the low-b region masks their visibility. Attenu-
ation by spreading of the wave front along the diverging
Ðeld lines will be greater in three dimensions than in these
two-dimensional calculations. There is also a small, but
possibly signiÐcant, coupling to the low-b fast modes that
will also remove power from the upwardly propagating
slow waves.

2. There are no wave sources in network regions.
3. The higher temperature and density scale height

within the network suppresses the growth of wave ampli-
tude with height.

4. The complex magnetic Ðeld geometry in the network
leads to efficient mode conversion and dissipation.

5. The waves are present but dissipated by Pedersen cur-
rents (Goodman 2000), possibly leading to heating of the
network elements.

The model used here does not contain enough of the rele-
vant physical complexity to allow us to choose between
these possibilities. In the future we hope to build network
models incorporating complex, tangled, nonpotential Ðelds
in order to test, by direct simulation, the viability of some of
these possibilities.

7. CONCLUSIONS

The theoretical study of magnetoacoustic oscillations in
the magnetized solar atmosphere has, up to the present
time, been largely conÐned to systems in which all variation
in the medium has been in a single spatial direction. Evi-
dently, such models can only be a crude approximation to
the true complex dynamics of the highly three-dimensional
solar atmosphere. In this paper we have gone beyond these
one-dimensional models by introducing two-dimensional
magnetic Ðelds, while retaining as much simplicity as pos-
sible in the remaining physicsÈone-dimensional thermody-
namic stratiÐcation, perfect nonradiating isothermal gas,
potential magnetic Ðeld, plane-parallel geometry, etc.

However, even with these physical simpliÐcations we
have gained access to a very rich phenomenology of wave
processes. Among these, the most important consequences
for solar studies seem to arise from the e†ect of inclined
magnetic Ðelds on the propagation of compressive, longitu-
dinal, acoustic-like waves. The additional Lorentz restoring

forces (magnetic pressure and tension) are typically very
small relative to the gas pressure at the photosphere, but
their ratio rises exponentially with height. In geometries
such as those of ° 4, the e†ect of this additional force is to
increase the wave propagation speed and hence to suppress
the steepening and shocking we would otherwise expect
from an acoustic disturbance.

In cases such as the internetwork simulation of ° 5, where
the Ðeld remains signiÐcantly nonvertical for many scale
heights, the e†ect is ultimately to reÑect all or almost all the
wave energy back downward. The height of this reÑecting
layer will depend on the Ðeld geometry and wave frequency,
but in the Sun it will certainly be a highly complicated
surface, and this strongly varying reÑection height may be
responsible for the intermittancy seen in the oscillations.

In order to test this hypothesis we need to study wave
propagation in more realistic atmospheres where we can
make reasonably conÐdent statements about the height
sensitivity of the spectral diagnostics in which the obser-
vations are made. A not unreasonable goal is to use
observed photospheric Ðelds as the foot points of a poten-
tial Ðeld extrapolation and then to use measured photo-
spheric velocities as a piston to drive waves through this
system using the numerical techniques employed here. With
simultaneous chromospheric observations we could then
make a direct comparison between simulated and observed
wave Ðelds.

More speculatively, the downwardly propagating waves
must eventually be reÑected back upward again by the
increasing temperature below the solar surface. The entire
system should therefore operate as a resonant cavity but
one with, presumably, chaotic ray paths and nonlinear dis-
sipative waves. Understanding the properties of waves
in such a system will pose an interesting challenge for
modelers.
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